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A series of papers [l-91 have been devoted to the flow of an incom- 

pressible viscous fluid in a space bounded by a porous wall. 1n these 

papers the permeability velocity on the porous wall is assumed to be 

given. However, problems do exist in which the permeability velocity is 

not known in advance and is determined in the process of solution. 

The properties of the porous medium of the body which is subjected to 

the flow are important for such problems. In the case of the flow of a 

viscous fluid about a porous shell, whose thickness is small in com- 

parison to the minimum defining dimension of thG‘re_gion of flow, the solu- 

tion can be built without approximation from filtr&,ion theory. For tbe 

boundary conditions on the porous surface, the component of the perme- 

ability velocity which lies in the tangent plane to the given point of 

the porous surface is taken as equal to zero and the normal component of 

the velocity vector is taken to be continuous across the porous boundary. 

It should be noted further that another approach to problems with 

permeable boundaries is also possible when flow in a singly-connected 

region is under consideration. For example, in [IO] the permeability 

velocity was assumed to be proportional to the difference between the 

fluid pressure and the pressure in the porous medium. Problems of the 

flow of a stationary stream of idealized fluid about a porous circular 

cylinder and a closed porous shell have been considered in tll-141 and 

in dissertations*. 

* Baichorov, Kh. Ia., The flow of a stream of an idealized incompressible 

fluid about some porous obstacles. Dissertation, MGU, 1949. Kolosovs- 

kaia, A. K. , Borne planar problems of the motion of a permeable body in 
an idealized incompressible fluid. Dissertation, MGU, 1953. 
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sphere of radius a and thickness 6 << a be flowed about 

axisymmetric stream of an incompressible viscous fluid. 

that axial symmetry is possible only by virtue of homo- 

geneous POrOSity. In the spherical coordinates r, 9. 8 we have because 
of symmetry 

uq 3 0, avo:a’p s 0, av,.,aql z 0 

At infinity we have the conditions 

VP = - u cos 8, v, = U sin 0, l.400 
(1) 

Here (I is the flow velocity at infinity. We shall solve the problem in 

Stokesian approximation. As is well known [15], the stream function 

Y(‘, 8) satisfies the equation 

DD$ = 0, 
sin0 a 

Dig+-- 
9 ag (D is Stokes’ operator) (2) 

The projections of the velocity vector are represented by the equal- 

ities 

1 alCl 1 
V =r2sinep 

a+ 
r “e==-_rsine (3) 

and the pressure is determined from the equations (cl is the viscosity) 

The stream function, defined for all space, has the form 

I# = sin2 8 (Ar4 + Br + Cr2 i_ E / r) (A, B, C, E=const) (5) 

From the continuity equation and the no-slip condition there follows 

“0 Iren -z 0 (iii 

The continuity equation of the normal velocity component across the 

porous boundary has the form 

u,. IV _a : o = 1’. I _. I P-l--C, (7) 

We shall consider the flow exterior to a porous sphere, i.e. for 

r > a. By virtue of (3) and (5) we have 

ut. = 2 cos Cl A+r” + -$ + c 
( + -t 3) 

r. = - sin 8 ( ++2c+-g 4.J r? -1. 
I 
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Here values of the constants for the exterior of the sphere are in- 

dicated by a plus index. From (6) we obtain 

4A+a2 -/- ~+2c+-~_o (8) 

Equation (6) and the condition (1) will 
be satisfied if we set (s is a parameter) 

A,=@ B,=-- aU (s- j), c, = - ~,lzU, E, = - suaa (9 

We shall now consider the flow within the porous sphere, i.e. for 
r a a. Applying conditions (6) and (7) in exactly the same way 

the condition of regularity of the flow in the interior region 

sence of sources and sinks), we ,obtain 

and also 
(the ab- 

A_ -= ‘/JJ (4s - I), B_ = E_ = 0, c_=-U(4s--1) (10) 

The values of the constants for I” G o are indicated by the minus 
index. Substituting the values of the constants in (3) and (5). , we obtain 

q-7 - I C: sin3 6 /~i-ar(s-i)+s~] (r 2 af 

-Usin26(4s--;I)(P--&) (P <Cl) 

I 
- 2u cos 0 

i 
+ + +*)ts(q o”>(1) 

uy = 
~-22ucose(4s-l)(i-~) (p < n) 

i 

Usin 1 +:(s--2)--s 7 
[ 

a 3 

C 11 (r > fl) 

‘@= 2Usin6(4s-1)[l--$-) (r d a) 

(12) 

From Formulas (11) it is seen that the projections of the velocity 
are continuous and the stream function maintains a continuous derivative 
across the porous surface. 

Formulas (11) define a single-parameter family of regular flows with 
a normally permeable boundary. For s = l/4 we obtain tbe solution to the 
Stokes problem of the flow about a sphere with a permeable boundary. In 
this case, as follows from (ll), the velocity within the sphere is equal 

to zero, which corresponds fully with the physical sense of the problem. 
From (11) it is possible to determine the permeability velocity 

CO = II, I_ = - U (4s - 1) cos e If”) 

For s > l/4 (the case of permeable flows) the streamlines have the 
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typical form shown in the figure. From Equations (4) it is possible to 

obtain the pressure distribution 

P (r, 8) = 
! 

p0 - 2pi7 (s - 1) are2 cos 6 (r > a) 
p0 -I~ 10~ Cl (4s - 1) rae2 cos 8 0. <a) 

(1.7) 

where p. is an arbitrary constant. From (13) it is seen that the pressure 

is discontinuous on the porous surface 

2-77s 
AP~, = P Ir=ai o - P ir=a_-o = 6pU ~ cos 8 a (14) 

The range of variation of the parameter s for physically possible 

flows is determined from the obvious conditions 

uo<O, Ap,,>O for 0<6<n,/2, v0>0, Ap,<O for n/2<0<n 

From (12) and (14) it then follows that 

1/‘4<.;<2/7 

Comparing (12) and (14), we obtain 

(1.5) 

VQ 2-7s 
A&=--Pa 4s__1 (If-3 

We shall now determine the resultant resistance of a porous sphere. 

Because of the axial symmetry it will be directed along the axis of sym- 

metry of the flow, the z-axis; we have 

R, = 2za2 
s 

[prr cos 8 - pre sin 81, sin 8 de (J7) 

Here in the square brackets the difference of the maximum values are 

taken for r = a + 0 and r = a - 0. Expressing the values of p,, and pre 

for r = a by p, vr, ve according to Newton’s law and then using Formulas 

(11) and (13), the integrand of (17) can be easily calculated. Integrat- 

ing, we have 

R z= - 8/3napU (II- 35s) (1% 

We obtain the Stokes formula from (18) with s = l/4. 

We shall consider the inverse problem. A porous sphere moves in a 

viscous liquid with constant velocity I! in the direction of the z-axis. 

Let y* be the stream function and vr*, V8* the velocity components of 

the inverted motion. We shall obtain the solution, letting 

** =. $ -1. 1, ?I;+ sin’ 8, v,,* =: v I- Ii cos 8, vn* = vO - U sin e (19; 
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The pressure distribution in this case will be just the same as in the 

problem of flow about the body, i.e. it will be determined by Formufa(13). 

The proof follows from (4). (19) and from the fact that D(r2 sin’ 8) = 0; 
the resultant resistance of the porous sphere in the given case will also 

be determined by Expression (19). 

The parameter s must be determined from experiment. It is easy to de- 

termine if the coefficient of permeability of the porous material of 

which the shell is constructed is known. Actually, Expression (16) can be 

written in the following form: 

a6 h-1 
k-T 2_Ts (“u) 

which is the Darcy law; the constant k is the coefficient of permeability. 
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